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Interchannel interaction of optical solitons
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We study interaction between two solitons from different frequency channels propagating in an optical fiber.
The interaction may be viewed as an inelastic collision, in which energy is lost to continuous radiation due to
small but finite third order dispersion. We develop a perturbation theory with two small parameters: the third
order dispersion coefficiemt;, and the reciprocal of the interchannel frequency differenge, We find that
amplitude of the leading contribution to radiation emitted during the collision is proportiorty /t6%. The
source term for this radiation is of the form that would be generated by a variation in the second order
dispersion coefficient. In addition, the only other effects up to the combined third order of the perturbation
theory are phase changes and position shifts of the solitons. Solitons propagating in a given frequency channel
interact via radiation emitted due to collisions with many solitons from other frequency channels. We show that
this intrachannel interaction effect, induced by many interchannel collisions, is identical to the radiation
mediated intrachannel interaction effect observed for solitons propagating under the influence of disorder in the
second order dispersion coefficient.
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[. INTRODUCTION pressions for the multisoliton solutions of the ideal NLSE,
direct perturbative analysis around these solutions, to the

Modern high speed optical fiber communication systemdest of our knowledge, has not yet been successful.
extensively use multifrequency channel technoldgpve- In this paper we solve this long-standing problem and
length division multiplexing, WDM, see, e.g., RéL]). One  analyze the effects of inelastic collisions between solitons
of the major limitations on the performance of WDM sys- from different frequency channels in the presence of third
tems is caused by the nonlinear interchannel interaction o®rder dispersion(Figure 1 shows a cartoon of the collision
data signals from different channels. We investigate this pheProcess. We calculate the spectrum and intensity of the ra-
nomenon using the conventional optical soliton as an exdiation emitted in the frequency channels of the colliding
amp|e. In an ideal case soliton bit patterns from differentSOIitonS as a result of the collision. We also calculate the
channels would not experience any distortion due to the elagollision induced change in the soliton parameters. To
tic character of soliton-soliton interaction. However, there ; :
exist other phenomena that are able to break the elastic na-
ture of the interchannel interaction. The leading effect of this
kind is associated with third order dispersion, which is the
linear dependence of the chromatic dispersion on the wave-
length of the carrier frequency. In this inelastic case, colli-
sions between solitons from different frequency chantiels
terchannel collisions lead to emission of radiation,
corruption of the soliton shape, shift in soliton positi@oli- Before collision
ton walk off from the assigned time sjpaind other undesir-
able effects. Moreover, the radiation emitted due to inter-
channel collisions might, in its turn, lead to interaction — —_—
between solitons from the same frequency charimeta-
channel interaction Therefore, it is important to have a re-
alistic estimation for the intensity of the radiation emitted, as
well as for the change in the soliton parameters due to the
interchannel interaction.

The interaction between ideal solitons can be modeled
using the ideal nonlinear Schtinger equatioiNLSE) [2,3]. soliton 2 soliton 1
This ideal interaction has been studied in ddil 6], and is
by now well understood. In contrast, accurate analysis of
interchannel interactions between nonideal solitons is a long- FiG. 1. Schematic description of the collision between two soli-
standing problem, which was never addressed in the pasbns from different frequency channels. The straight arrows denote
The main problem in this case is to develop a perturbationthe group velocity of the solitons, and the curly arrows denote ra-
theory around the multisoliton solutions of the ideal nonlin-diation emitted by each of the two solitons in its own frequency
ear Schrdinger equation. In spite of existence of exact ex-channel.

soliton 1 soliton 2

radiation 2 radiation 1

After collision
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achieve this goal we, first, find by means of the singular iazq}+a1:2\lr+2|\li|2\[r:id3(9?\ll. (2.2
perturbation technique proposed by Kdipa single-soliton

solution, which is stationaryindependent of position along . . . . '
the fibeyp, taking into account third order dispersion. It is Here, z Is the_ dlmen5|onless_ _posmon along the_ fiber,
' ' =X(kPy/2), xis the actual position along the fibétg is the

assumed that even if an initial pulse pumped into the optical eak soliton power. and is the Kerr nonlinearity coeffi-
fiber is not exactly of this stationary form, it evolves into this P P ! y

statonary soluton afte a transiel. The form of tis sta- ¢ 2 SRR 8RR R ER e RN
tionary solution is compared with results obtained in earlier . . . . L
o IS the soliton width. The spectral width, is given by

studies of single-soliton propagation in the presence of third .
order dispersion[9,10]. We then use two such stationary 0 (o), and the channel spacing byv=pBvo. The
pulses, propagating with different group velocities, as thePulse envelope i =E/ /Py, whereE is the actual electric
initial condition for the collision problem. To find the effects f|eId._The dlmenspnless second and third ozrder dispersion
of the collision we develop a perturbation theory witho ~ COefficients are gien byd=—1=p,/(xPo7) and ds
small parameters: the dimensionless third order dispersiorr B3/(3xPo7;), wheres, and B3 are the second and third
coefficientd; and the reciprocal of the dimensionless inter-order chromatic dispersion coefficients, respectively. The
channel frequency difference @/ (Nonanalytical terms are typical setup for a short pulse optical fiber experimentgs
neglected in this perturbation theory, which is the standard=0-5 Ps, B,=—1 ps/km, B3=0.1 ps/km, k=10 W™*
case. However, it is possible to show that even if such term§m ™, Po=0.4W, Av=2.03< 10" Hz, and the total energy
do exist their contribution to any collision induced effects of the soliton is 4<10™'* J. These values corresponddg

can be neglected i is sufficiently small =0.066 667, ang3=10.

We find that the amplitude of the emitted radiation is pro- The termidsa7¥ (whereds is a small constapton the
portional tods/82. The source term for this radiation has the right-hand side of Eq(2.1) accounts for the effect of third
same form that would be produced by a variation with re-order dispersion. Terms of higher order, such as terms with
spect to distance along the fiber of the second order dispehigher temporal derivatives, and terms accounting for types
sion coefficient. The soliton amplitude and the phase velocitpf nonlinearity other than the Kerr nonlinearity, can be ne-
do not acquire any change in perturbative corrections up tglected in the majority of practical cases. Equati@r) is
third order. This explains why accurate analysis up to theglobal in the sense that it explains simultaneous propagation
relatively high, third, order is necessany.is also found that through many frequency channels. Notice thatdg# 0, Eq.
soliton propagation in a given channel experiencing many2.1) is not integrable. However, in many practical cadgs
collisions with solitons from other channels can be extracted<1, allowing a perturbative calculation about the integrable
from the same equation that describes propagation of solid;=0 limit.
tons in a fiber with weak disorder in the second order disper- Fiber losses in Eq(2.1) are neglected. In practice, this
sion coefficient.(The latter problem was addressed in Ref.can be achieved by compensating for losses in a fiber span
[11].) This observation means that results obtained in Refby means of distributed optical amplification, e.g., Raman
[11] can be readily applied to describe the intrachannel interamplification. Compensation for fiber lossgscan also be
action between solitons caused by many interchannel colliachieved without distributed amplificatidi2] by a proper
sions. choice of the parametetsv, B,, B3, and 7. Indeed, ifrg

The material in the manuscript is organized as follows.<\/B,/y andAv>(y73)/ B, the term in Eq(2.1) respon-
The stationary single-soliton solution of the nonlinear Sehro sible for losses can be neglected. Note that(Bd) can also
dinger equation in the presence of nonzero third-order disbe used for description of optical pulse dynamics in two
persion is perturbatively constructed in Sec. Il. This stationtypes of fiber links with in-line amplifiersti) optical links
ary solution is then used as the initial condition for the two-lumped optical amplifiers and fiber spans with exponentially
soliton interchannel collision problem. Section Il is devoteddecreasing spatial dispersion proffl&3]; (i) optical links
to description of the two-soliton collision. The general for- with distributed in-line amplification.
mulation of the perturbation method is presented in Sec.
1 A, while Secs. IlI B, lll C, and Il D describe the first,
second, and third orders of the perturbation theory, respec-
tively. Section 1V is reserved for conclusions. Some auxiliary Let us assume thad;<1, and derive perturbatively a
calculations are detailed in three Appendixes. zindependent(stationary single-soliton solution of Eg.

(2.1). Combination of two such well separatedtistationary
solutions will later be used as the initial condition for the
Il. THE EFFECT OF THIRD ORDER DISPERSION two-soliton collision problem.
ON A SINGLE SOLITON Whend;=0, the single-soliton solution of E¢2.1) in a
given frequency channéi.e., characterized by the frequency
shift B8 relative to the reference chanh& described by

B. Stationary single-soliton solution of Eq.(2.1)

A. Introduction

Propagation of an electric field wave packeét(t,z) ) ) o
through an optical fiber under the influence of third order t7)= exfiag+iB(t—yp) +i(nz—B7)7]
dispersion is described by the following modification of the vpt2)=1g costi n(t—yz—2pB2)] ’
nonlinear Schrdinger equatior(see Ref[2], p. 44: (2.2
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whereag, 775, andy are the soliton phase, amplitude, and plete set of the eigenfunctions hf includes the infinite
position, respectively. We shall call this solution the ideal, or

bare soliton, solution, and refer to E@.1) with d3=0 as
the ideal NLSE. - a2 A= o 2

To find a stationary single-soliton solution of E¢®.1) L= K+ mpee, Ly o= =K+ 7). (212
with d3;# 0 one first makes the following substitution:

(continuou$ set of unlocalized modeqsk and ¢y, obeying

There are also four discretéocalized modes in the spec-
trum, fqy, fq, fy, andfs, defined as

W 4(t,2) =W 4(x), (2.3
WhereX:;’?BTﬁ' LanOZO, Lr)Bfl:O’
Tp=t—yz—2B(1+3d3p/2)z, (2.4) E,]Bf2= — 275, tﬂﬁf?,: 273, (213
75=(1+3d38) " Y2y (2.5 The complete system of eigenfunctions of the ideal NLSE,
k p found by Kaup[7], is described in Appendix A. The unlocal-
and ized eigen-functions can be written a§(x)=fk,,]ﬁ(x) and

o (X)=fi, (X), wheref, andf, are the eigenfunctions of
=agtB(t—yp) +[n3—BX1+dsB)]z. (2.6 78
Xp= gt B=Yp) +Lmp= B b @8 L,,B at 7g=1 introduced in Appendix A.
This substitution accounts for effects caused byd# shift It is natural to expand? 4 (x) in series in the eigenfunc-
in the second order dispersion coefficient in changel fi r
- . ons ofL
Thus, our perturbation theory does not require smallness o+ g
the shift in the second order dispersion coefficient. From ~
Egs.(2.4) and(2.5) one can see that the two main effects of W p1(X)
the dsB shift in the second order dispersion coefficient are a * (%)
3d3B/2 increase in the group velocitffor 8>0) and an Al
increase of the pulse width by a factor of{BdzB)*? (for +o dk
B>0). Using this substitution one obtains the following +J

equation for the functioﬁfﬁ:

=Cofo(X) +C11(X) +Caf 5(X) + Caf 3(X)

5 LCkpX) +ci a)]. (219

— o0

Expansion of the right-hand side of E.10 over these
idy 7} eigenfunctions is

/” ( 7)
(1+3dj ,8)3/2 ﬁ o
: 37p Nr// (X)( )
Let us now assume thay<1 and look for perturbative so- (1+3d,B)%? Vo
lution of Eq.(2.7),

ngqr’,;— n%\I’B-i- 2|V 4|20 5=

- - - L/ J+w k(k/ 9+1)2@(X)
W () =W go(X) + Wy () + -+, 2.8 4(1+3d58)%2 ) cosli(7k)/(27)]
where k(K = )?e(0) idsmp
~ 73 COSf[(Wk)/(Zr]B)] (1+3d3ﬂ)3/2 1(%).
W go(X) = coshx) (2.9 215

Substituting Eqs(2.14) and (2.15 into Eqg.(2.10, and also

is the zero order solution, arﬁiﬁl is the first order(in dj) using relations(2.12) and (2.13, one obtains

correction. Substitutingi’ﬁ(x) into Eq.(2.7) one arrives at

v id3 7 fﬂc%[(k% 75 k() — (K2+ n3)ck e(X)]
W 51(X) idzn T ik )( ) 2.10 2 ) Ck Pk ) Ck Pk
T8\ 32" BO ! )
WE (X (1+3d B) ~ -
) — 294 o)~ 27}Esf2(0)
where the operatdr ng is _ dsﬂz jm K(k/ 775+i)2<,0k(x)
) 4(1+3d,3)%2 J = | coshi(mk)/(27p)]
L, =73 (02— 1)os+ 205+i0y) |. 2.1 — _
L 77B ( X ) 3 OSH(X)( 3 2) ( :D k(k/?]ﬁ_|)2(,0k(x) |d37]?§ . (X)
~ cosh(7k)/(2 32’ 17
This operator describes evolution of a linear perturbation (ml(2mp) ]} (1+3dsp)
around the single solito(R.2) of the ideal NLSE. The com- (2.16
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FIG. 2. Ideal €3=0) soliton solution in theB=0 channel,

PHYSICAL REVIEW E68, 026605 (2003

lution of an initially ideal soliton under the influence of third

order dispersio9,10]. Even though the correctioW 4,(x)
gets contributions from the continuous spectrum eigenfunc-
tions, the existence of the double polekat*i in the inte-
grand appearing on the rhs of E®.20 guarantees that

\Tfﬁl(x) is localized, i.e., it decays exponentially xnfor x

>1. In addition, linear stability of the stationary solution
W g0+ Vg1, Was proved and numerically confirmed in Ref.
[8]. Notice that the coefficients, andc; in Eq. (2.19,
which correspond t®(d3) corrections to the soliton’s phase
and position, remain arbitrary. For convenience we shall
choosec,="¢,=0, thus obtaining that 4 (x) is odd inx
and is purely imaginary. One should also point out that the
perturbation theory presented here is valid for any value of
B, providedd;<1 and 1+ Bd;>d;. The last inequality is
the condition that the effect of the second order dispersion
coefficient in channeB essentially exceeds the effect of the

|W o =V o0, solid line, and the principal part of the respective first third order dispersion coefficient. Finally, by a similar
order (in dj) correction, | W o/ds=—iW,/ds, dashed line, are method one can obtain the(d3) and higher order

shown as functions of the time,

Projecting the last equation on the eigenfunctionig};,

one gets the following expressions for the expansion coeffi-

cients
~ id3 75 ~
Co=————, C3=0 2.1
27 2(1+3d,8)%? ° @17
and
dsk(k/pg+i
Ce wd3k( 7 ) (2.18

" 2(1+3dyB) ¥4 Kl 75— i )cost (7k)/(27)]

z-independent corrections to the stationary solution found
here[8].

[ll. TWO-SOLITON COLLISION ACCOUNTING
FOR THIRD ORDER DISPERSION

A. General formulation of the perturbation method

We now turn to calculation of the effects caused by col-
lision of two solitons from different frequency channels. We
assume that the initial condition for the solitons, far away
from the collision region, is given by a sum of the stationary
single-soliton solutions found in the preceding section. Since
these solutions are stable, even if the initial shape of a pulse
is not precisely of the stationary form it evolves to it after a
transient. Thus, no radiation and no change in the soliton

Using Egs(A5) and(A6) for the continuous spectrum eigen- parameters are caused by the free propagation of these sta-

functions, one can simplify the expression ﬁ;ggl(x),

{I'm(x) ~ ~ ~
~ . =Cofp(X) +C1f1(X) +Cafa(x)
Ws1(X)
idzn5 ( 1 )
2(1+3d3[3)3’2|(x) 1) @19

where the functiori (x) is defined by

|Ef+m dk k[kcoikx)tanr(x)Jr%(k2—1)sin(kx)].

- (k?+ 1) costi(7k)/2]
(2.20

For illustrative purposes we shoﬁ/oo and —iﬁfm/d?, to-
gether in Fig. 2.
Comparing Egs(2.17) and (2.20 with Eq. (A15), one

tionary pulses before the collision. We develop a double per-
turbation theory with the two small parametetsand 1.

For simplicity, and without any loss of generality, one of the
two channels is chosen as a reference one With0. We
assume that for the second changk>1. (In practice, this
condition is satisfied very well even for neighboring chan-
nels) As it is shown in Appendix B, expansion of the exact
two-soliton solution of the ideal NLSEEQ. (2.1) with dg
=0] in a series in 18 is given by

Pwo= ot g+ ot dpt d_ gt daptO(1B°%), 3.0

where ¢, and ¢z are O(1) single-soliton solutions of the
ideal NLSE described by Eq2.2). The termsp, and ¢ are
corrections of the leading order A/to these single-soliton
solutions in channels 0 an@, respectively. The termg _ 4
and ¢, oscillate with frequencies- g and 28, respectively.
These terms are of leading ordeB1/ and are exponentially

concludes that one effect of third order dispersion is arsmall outside of the collision region. Furthermore, outside
O(d;) frequency change, which is not accompanied by ahe collision regiong, and ¢, generate only small constant
corresponding change in the group velocity. Such an effectorrections to the parameters ¢f, and ¢z, so thaty,
was observed earlier by other authors who studied the evaeduces to a sum of the two ideal single-soliton solutions.
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This last result remains valid in any order in3l/We also T R N 2F, 32, *
i : 0, P0—i[(9f— n5) Do+ 4| Vo|*Dy+ 2V 5D
show in Appendix B that fot8|>1 the only effects of col- 2 ° 1[(90= 70)Pot 4] ol “P 0o
lision between two ideal solitons ar®(1/8) change of ) e v . .
phase and(1/8?) position shift(time retardation =4 W[ “Wo+ | W Do+ Wo(W D+ WD)
It is therefore natural to look for a two-soliton solution of
Eq. (2.1) with d3#0 in the following form: ~ 1 ~ 1~ -~
+w3qfﬁq>,ﬁ+§«pg¢;ﬁ+xpo|q>o|2+§~1f3q>g
Vo=Pot+ Vs+d. (3.2)
+Wo| D g2+ Do(W D% +WED ) |+ 307Dy, (3.6)
Here ¥, and W, are stationary single-soliton solutions of
Eq. (2.1) with d3#0 in channels 0 ang, respectively, and  Three different regions iz are naturally separated. The
e '5]; a Smhallz-dltﬁpgndenlt cgrrf)ct!on_to these SOIIEUUO;SI arlSirst region is the small intervdlzy—2/| 8],zo+2/| 8|1 in the
ing from the collision only. Substituting’ v into Eq. (2., vicinity of the collision pointz,, where|B|>z>1. In this

one arrives at e ) .
region®, acquires fast change with respecttas a result of
collision. SinceAz~1/8, in the first order of the perturba-
tion theory thed,®, and | W 4*¥, terms give the leading
_ 2 2 2 2 o . ~
= — AW 42V — 4| V|V ;= 2W W — 2V W contributions to Eq(3.6), while the #’®, term can be ne-
_ " 2 X k)2 2 glected tqgetherwnh all other terms. In the nex_t orders of_ the
4o qfﬁ)@l 2Wo+Wp)® 2o perturbation theory one should carefully consider contribu-
+id3ai®. (3.3 tions coming from terms such @d,, d;9 ®,, as well as
contributions coming from interaction terms such as
Let us calculate, for example, the collision induced cor-l‘lfﬁlzllfo, ‘PO‘I'BCD* , etc. In the precollision regior<z,
rection @, to the stationary pulse in the reference channel._E/|B| and in the postcollision regiom>zo+~z/|/8|, the
Then, the total pulse in the reference channel is given b¥trength of the interaction between the two solitons is expo-

\%Z\PO“LCDO- (Calculation of the correctiorb , to the sta- o niiaily small, so that the terfi¥’ 5| 2¥, and all other inter-
tionary pulse in thed channel is similar. By analogy with  5¢tion terms can be neglected. Thus, these two regions cor-
Eq. (3.1), one substitutes respond to the free propagation of the stationary pulse before
and after the collision. Indeed, the description of the propa-
P=Py+ P+ D _g+Dypt---, (3.9 gation ofd, given by Eq.(3.6) is exactly equivalent to the
description given by substituting the complsiagle-soliton

. t _ .
where® _; and ®,; correspond to terms in channeisg solution¥,="¥,+®, into Eq. (2.1).

and 28, respectively, and the ellipses represents higher orderbtlt _fOLII?WS’ fror:n w?at ISI explauged gbove, t?lat In (t)r(rj]etrhto
terms in other channels. Sinek, oscillates together with obtain @, one has 10 solve and subsequently maitc ree

W,, and since |>1, one can use resonant approximation,Cauchy problems imposed at= —<, z=2y—2/|| andz
simply neglecting exponentially small contributions coming =z,+2/| 8|, respectively. Matching means that the initial

from terms rapidly oscillating with respect toandz ®,  conditions atz=z,—2/|3|, and z=z,+2/|B| are obtained
dynamics is governed by from the solutions found in the<{=,z,—7/|8|] and the

. , , - [2o—2/B.,20+2/| B|] regions, respectively. As we shall see
19,D0+ f Do+ 4|Wo|° Do+ 2V D7 later, the results of these calculations are not sensitive to the

_ —4|‘I’ﬁ|2‘l’o—4|‘l’ﬁ|2q’o—4‘1’0(‘1’;3@2+‘1’2§q’ﬁ) specific value of t[le collision region cutoff parar~ne”lér~,
The correction®, and the complete solutio’ ="V
+§>0 are obtained in the form of a perturbation series. That

19,0+ G7D+ 4| W+ |20+ 2(V o+ W ) 2%

—AVEW ;D 5= 2WEDS AW (| D2 - 2W ] DF

_4\po|¢)ﬁ|2_4q)0(«y3¢)2+\pz¢)ﬂ) is, in the collision region one substitutes
+idgd @o. (3.5 ®g(hy,2)=Doy(Ro,2) + Doofg2)+ -+, (37
In writing Egs. (3.4) and (3.5 we neglected terms of order WV o(hg)=Wog(hg) + Woy(ho)+- - -, (3.9

1/8% and higher. Indeed, such terms only contribute to
O(1/8%) or higher order effects that already exist in colli-
sions between ideal solitons. Substitutingto(t,z)

=W o(ho)explxo) and ®o(t,z)=do(ho)explxo), whereh,

= ot and o= ap+ ngz [see Eqgs(2.3—(2.6) with 3=0], into Eq. (3.6), and linearizes the result with respect to the
one derives two small parameterd; and 13. Index notations introduced

and

W 4(hg,2) =X W go(Rp)+ Vg (hp)+---1 (3.9
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in Egs.(3.7—(3.9 are as foIIows.&)Ol and &)02 account for Let us now substitutﬁf5=equX0)(\Tfoo+ q’oﬁ &)01) into
the first and second combined order corrections with respedq. (2.1). The O(d3) part of the resulting equation is simply
to both smaill paranleterdg and 1B. The stationary zero Eq. (2.10, whose solution is‘i'm(ﬁo)- To analyze the
order termsW¥ o, and ¥ g, in the expansiong3.8) and (3.9)  O(1/B) part of the equation, one defines

correspond to the balk@lea) solitons given in Eq(2.9) with _ _

B=0 and generig3, respectively. The stationary correction Xo'=ag+ 62"+ 53z, (3.13
terms\ffo1 andfffﬁl, which are given by Eq92.14), (2.17), O)in e )
and (2.18 with =0 and generalg, respectively, are Wheredagi is given by Eq.(3.12. We then subsitute
O(d3). In the free propagation region, one substituiey ~ Voo€xplxg) instead of expf)(Voot Poy) into Eq. (2.1).

— explx)(Vo+Dy) into Eq. (2.1) and linearizes it with re- Clearly, ¥ ooexp(xy) is a solution of the equation up to or-
spect tod; and 1. der 13, which obeys the initial conditio3.11). Thus, one

Contributions to® of first, second, and third combined finds
orders will be found as solutions of the respective linear ~ - o Oing
inhomogeneous equations obtained by this perturbation D o1(ho,z<2o—7/|B|) =i Sy "V go. (3.19
method. To analyze the frgafter collision propagation of

~ Lo~ . ) In the collision region Eq(3.6) reduces to
& one needs to projecb onto the set of eigenfunctions of

I:,,O. This procedure allows one to easily separate the parts in _ _ 4i 7, 77?3
= . . . &Z¢)01:4i |\P180|2\P()0: ~ = . (315)
®,, corresponding to changes in the soliton parameters, coshho)cosﬁ(hﬁ)
from the part corresponding to emitted radiation. The expan-
sion Ofa)o in the series over the eigenfunctionslfq;o is Integrating Eq«(3.15 over the collision region, one finds
S o N © 4o, 20+ 2/ B)) ~ Pos(Pio, 20211 B])
Do) S 2t o+ UO) 2
~ . o~ = ililNg ~ i < '
5y =0 Uo* _ Ao fz"tz’ﬁ—dZN . (3.16
. ) costthy) Jzo-718l cosi(hy)
~ ~ +OC ~
=§0 a;fi(hg)+ le E[ak(z)ﬁok(hO) Since the integrand on the rhs of £§.16) is sharply peaked
in the vicinity of the collision point,, the integration limits
+a (2)ex(ho)1, (3.10 in Eq.(3.16 can be replaced by« and, respectively.

Performing the integration and using the initial condition

wherev, corresponds to the radiatiduinlocalized part of (3.14 atz=2,—2/|B|, one arrives at

o. Do(Ro.2o+ 2| B) =1 6§y F oo, (3.17
B. First order perturbation theory where
_ Let us_ con5|de_r prc_Jpagatlon. of the soliton in t~he precolli- 5a§ﬁ)°”t= _ 56«801”". (3.19
sion region. We find it convenient to choose sukh, at z
=—o that coincides with theD(1/8) term in the z<z, In the post-collision region one can show in a similar

— 1/ B8] asymptotic form of the expansion of the ideal two- manner that

soliton solution(B1). Thus,(%01(ﬁo,—w) is proportional to - ~ C outs
the sixth term on the right-hand side of E&6), Doy(ho.z=20+7|B) =160 Voo,  (3.19

Dgy(Fo, — ) =i 8a PV o, (3.1)  Comparing Egs(3.19 and(3.14, we see that the only effect
of the collision in the first order of the perturbation theory is

where a change of the soliton phase,

- 47n(1+3d5B8)Y2
275(1+3d3B) "2 AalQ=5a§ou- 5a PN = 74 3h) (3.20

01 - .
TN (3.12 (1+3d;8/2)| 8|

Notice that Eq.(3.20 is also consistent with the resyB8)
In Eqg. (3.12 and the following equations the supersciipt obtained in Appendix B, from the /expansion of the exact
stands for initial values of phase, position, etc., while thetwo-soliton solution of Eq(2.1) with d3=0.
superscriptout represents final values of the same param- Until now we have only calculated the form of the leading
EIeIS: TheO(ds) part of the initial condition is taken t0 be  conripution ®,, outside of the collision region. However,
Wi(ho). calculation of higher order terms requires knowledge of the

Sl

026605-6



INTERCHANNEL INTERACTION OF OPTICAL SOLITONS PHYSICAL REVIEW B8, 026605 (2003

completez dependence ofbo;. To achieve this aim let us SO —Angn; tanh(hy) 5.2
integrate Eq(3.15 from — to some generat. This inte- 2002 7 (1+3d,8/2) B coshﬁo)cosﬁ(ﬁﬁ)' :
gration yields

) 1o ~ Integrating over the collision region, and using the initial

Doy(t,2)=— iy (3.21  condition(3.29 atz=z,—2/|B|, one derives
ot (1+3d3B/2)B  coshhy)
L " (0) h + / __l S (0)in 2\1, (0)outy,
where we have used the initial conditi¢d.11). 2(ho,zo+2/|B)) = 5 (dagr) "W oo~ 700Y02 00
(3.28
C. Second order perturbation theory
where
1. O(d)
(O)out_ __ (0)in
The complete solution up to second order is given by Yo =~ o - (3.29
W o=expixo) (Yoot Wort Voot Port Do), _Wwhere  the In the post-collision region one can show by arguments
O(d3) initial condition is taken to be exi)Wo(ho). This  similar to the ones used above that
term remaing independent throughout the entire collision.
(o, z=2,+7/|B])
2. O(UB? 1
T (0)in\2+]r (0)outg,
The initial condition for theD(1/82) term ®{Y is chosen == 5 (8agr"™)*Woo— 708y’ "W go.- (330

to coincide with theO(1/8%) term in the z<zo—1/|B|

asymptotic form of the expansion of the ideal two-soliton Comparing Eq.3.30 and Eq.(3.25 we see that the only

solution (B1), effect of the collision in order B2 is a position shift(time
retardation given by

(O)(ho.—oo)_ - —(&Y(O)in)zq’oo_ ﬂoéyg%)in(i'(/)o:

474(1+3dsB)Y?
(3.22 (0) 5y(0)out 5)/(0)'“ B

(1+3d48/2)%8|8|

Takingd;=0 we see that Eq3.31) coincides with Eq(B9)

12 obtained from the 13 expansion of the two-soliton solution

275(1+3d3p) (3.23 of the ideal NLSE. This is also the result obtained by Mol-

(1+3d,8/2)%8|8| ' lenaueret al.in Refs.[13] and[14] for the collision of ideal
solitons.

(3.3)

where

(0)in _
02

and \Tf{,oz d\i’oo/dﬂo. In the precollision region one substi-

— o~ 3. O(dy/
tutes into Eq.(2.1) a solution of the form expgy) W hy' _ _ (% A -~
where For convenience, the initial condition for th@(ds/pB)

B _ correction term® (Y is taken to be
hg'= 7o(t—0yG"™). (3.29 e e =
o DE(ho, — ) =i )"V o1(Ro). (332
Evidently, expi(xs)¥oo(hg') is a solution of the equation up 5
to order 132 that satisfies the initial conditiof8.22. Thus, To find ®{}) in the precollision region let us substitute
L gqu}{;l‘)(gfoo+ \Ifﬁl) intoI Eq. (2.1). S‘;bviousnéi ?(;(pi/(}g;)\lfhm
DR z<20-7/| B)) = — = (5aQM2F 0)ingy + is a solution of the resulting equatigup to orderd;/B) that
0z (Mo 0 8D 2( a0 ) Voo~ 77063/0 ( 003 obeys the initial conditiori3.32. One finds
3.2

(1) _ 0)inq,
In the collision region the(1/8%) part of Eq.(3.6) is ?(Mo,2=20-2l| B) =i 60ty "V ou(ho). (333

~ ~ ~ o The O(d5/B) form of Eq.(3.6) in the collision region is
D) —i[(97— 1) Doy + 4| Wo| Doy 2 D]

- ~ 9, = 4i|W 5|2V g1+ 4 W (Vg + V%) V. (3.3
=4i|x1fﬁo|2c1>01+4iqfoo(xpﬁocbgl+quoq>m). (3.26 2Pz =4V pol “Wor po(¥ g1+ W) Woo. (339

Fixing co=c;=0 in Eq. (2.14), one gets that[f is pure
Using Eq.(3.21) for ®oy(t,2) [and a similar expression for imaginary so that the second term on the rhs of(BcBél) is
(I)ﬁl(t z)] one can show that the only change in the soliton’sidentically zero for any value of. Notice that even for an

parameters comes from the terim\[za)m. Equation (3.26 arbitrary choice of these coefficients the real parﬁ&gl is
can then be reduced to an odd function oz and this term does not give any contri-
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bution when integrated over the collision region. Integrating

Eqg. (3.34) over the collision region while using the initial
condition (3.33 at z=z,—2/|B|, one obtains

DP(t,29+ 71| B]) =i 6" W oy (o),  (3.35
where sa{9°" is given by Eq.(3.18.
In the post-collision region one obtains
OfP(1,2=20+ 2| B) =i 60 Wo(hp).  (3.36

Comparing Egs(3.36) and(3.33 we see that the only effect
of the collision in orded; /B is anO(1/8) change of phase,
given by Eq.(3.20, on top of theO(d3) stationary solution

’\Ifol.

D. Third order perturbation theory

The complete solution up to the third order of the pertur-
bation theory is given by
Wh=expli xo) (W oo+ g1+ Voot W oat Doy + oot Dog).

The O(d3) correction is given bﬁ’og. This term remaing

independent throughout the collision dynamics. From the

discussion of theO(1/8) and O(1/8?) corrections, one
should expect that th©(1/8°) term will only describe ef-
fects that already exist in the ideal soliton collision. In par-
ticular, it will not contain any contributions to radiation
emission, amplitude change, or frequency change. Furthe

more, one can show that the only contribution to the
O(d%/B) term will describe a change of phase on top of the

stationary solution. Therefore, the only new nontrivial effect,
i.e., emission of radiation, can come from ttd;/B?)
term.
To analyze theD(ds/B?) correction, we first write it in
the form
DY =PNR (3.37)

+U03,

whereu 3 is the leadingQ(d /%), contribution to radiation
emitted due to the collision an®$NR corresponds to the
nonradiative part. The initial condition fab(Y is taken to be

Bf3(Ro, o) = DEN(Ro, — ) =1 Saly "W oo ho)
1 Lo~ e
— 5 (5a™ W 01(Ro) — mo Sy "W gy(Ro),
(3.39

from which it follows that

503(?10,—@):533('50,—@):0, (3.39

i.e., the initial condition contains no radiation. In Eg.38),
6aly"" is an initial O(d3/ %) contribution to the phase.

PHYSICAL REVIEW E68, 026605 (2003

In the precollision region one substitutes into E2.1) a
soluton of the form  expfl)[Woo(ho)+Woi(hy')
+v03(ho) ], where

;(i()n =apt 5ag1)in + 5&8%”“ + 7732.

(3.40

Linearizing the resulting equation with respecdtpand 13
one obtains a linear partial differential equatigRDE),
which is automatically separated into two parts: one

®YNR and the other fowos, which can be written as

for

3

Vo
=0.

((?z_il:no)(»ag

(3.41)

3
To  find DUNR  we notice that  expfM[Woo(ho)
+Wo,(h")] is anO(d5/B?) stationary solution of Eq2.1)

which obeys the initial conditio3.38. Thus,
DEYNR(Ro,z<20—7/| B|)
_ | o~
=i "™ ool fio) — 5 (8af™) ¥ 01(Ro)

— 700y$)" W 4y(Ro). (3.42

The only solution of Eq(3.41), which satisfies the initial
condition (3.39), is the trivial solution
- voa(ho,z=20—2/| B|)=vEsho,2<2,—2/| B|) =0

(3.43

To obtain theO(d3/B2) correction in the collision region
one considers all th®(d3/B) terms entering E(3.6). Then
one obtains

LD —i[(02— ) DD+ 4| W o 2D + 22 DD* ]

= 41|V ol 2D + 4 W g (W gy + V) Doy
+ AW W 0y (D oy + D) + 4 W oW ED oy + 4T W 44

((I)(l) (l)*)qf00+4|\lfﬁo(fl> 1+‘~I‘351)‘1'01

+dgdf Doyt 4 (W g @% + V% D) Top. (3.44)
For the choic&,=¢,=0 in Eq.(2.14 one can show that the
only terms in Eq(3.44) contributing to the integral over the
collision region ared;d3®,, andid?®{y) . Thus, Eq.(3.44
turns into
3, —i RO =d377 Dy, . (3.49
To solve this equation with the initial conditiori3.42 and
(3.43 one first writes
b=

+ DR, (3.46
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where DEYR(t,20+2/|B) 1 2

=—iB — = =

- - DR (t, 20+ costthy) cost(ho)
9, DN 2D =0 (3.47 o3 (L2t 2B
1

X ) (3.52

and -1
Expanding the rhs of Eq3.52 in terms of the eigenfunc-
DEYR=dsd7D0;. (3.49 tions of the operatoL ,, one arrives at

1 2

The term®{YR=7 o5+ YN stands for the part ofb(y _
costthg) cosk(hg)

that contributes to radiation emission, ahgyNR=d{PNR

+®NR s jts nonradiative part. The teriw?dL in Eq.
(3.47 leads only to a position shift equal tg,Ay'Y, with =iBf(hy) +
Ay given by Eq.(3.31), on top of the stationar(ds)

single-soliton solutionifm. Therefore, the only term in Eq.
(3.45 that gives a qualitatively new contributignadiative

term) is dad>® ;.
Using Eq.(3.21) for ®y; one can rewrite Eq.3.48 in the (

—iB

o
-1
vod(t, Zo+2/|ﬂ|))

(3.53
vit,zo+2/| B])

where the leading contribution to the emitted radiatiorz at
=2z4+2/|B| is given by

following form

an(t,zo+~2/|,3|)) =_2iBtanh°-( 0)( )
V31,204 21| B]) cosh(fy)

—6i ﬂgﬂédg [ 1 2 +oo ~ ~
P{IR= ——— - =B| ddagzo+z/|B])fsh
& (1+3d3B/2)B| costihy)  cosi(hy) J;w Las(z0+2/| A Ts(ho)
— (3.49 +a% (20+ 2| B T(Ro) .
cost(hy) '

The expansion coefficientag(z,+2/|8|) appearing in Eq.
(3.54) are given by

Integrating Eq.(3.49 over the collision region with the ini-

tial conditions(3.42 and(3.43), one obtains —i(s+i)?
ay(zo+2/1))= "~ 4 coshims/2)’

(3.59

DYR(t, 20+ ——|B(%\If h
(t20*2/18) oo o) where s=k/7,. From Eq. (3.54 it follows that

1 5 DINR(Ry,20+72/| B) =iBW oRo). This result combined
=—iB == Bl with the result obtained from integration of E(.46) over
cosfthg)  coshi(ho) the collision region gives
(3.50
DN (g, 20 +2/| Bl) =i 8y W oo hp)
where the coefficienB is defined by 1 o
— 5 (8ag)"™) 2V gy(Ro)
675m5(1+3dsB)dg -

= (3.5 = m00ye" Woy(ho), (359

(1+3d3B/2)%B| |

wheresa(y)°"is anO(d;/B?) correction to the phase. From
Notice that the ter® (YR is of the same form that would be EdS-(3:52, (3.53, and(3.59 one finds that the projections
generated by a variation with respeciztin the second order of <I>(3 (hg,zo+ z/|,8|) on the eigenmodefs, andf; are zero.
dispersion coefficientAd«B. It follows that the source term This means that the soliton phase velocity and amplitude do
that gives the leading contribution to the collision-inducednot change at this order of the theory. The result for the
radiation emission can be equivalently described as a fasoliton amplitude is consistent with the conservation law for
change in the second order dispersion coefficient occurringhe total energy, which requires=1+0O(d3/g* for both
over the collision region. One can write E(.50 in the  solitons. (See Ref[11] where a similar situation was dis-
following form cussed.
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In the post-collision region one substitutes into Ejy1) a
solution of the form exp§S")Woo(ho)+ ¥ or(hS™Y

+00s(ho)], wherex$“' is given by

= ao Salf e balfos oz

(3.5

andh$"'= 7,(t— oy{Y°!"). By the same arguments given for

the free propagation region before the collision, the linear

PDE separates into two equations: one %’NR, and the

other forv o3, which is Eq.(3.41). Using the initial condition
(3.55 one finds

a)(()la)NR(F‘o,ZZZO"‘Engh
=i 5“8%)%@00(?10)
1 Lo ~
— 5(3ag)"™) W oy(ho) = mody "W y(Ro) .
(3.57
One expressesy; via

(503(t,2)

vEAt,2)

) -8 dga2)t.o) +al (9ol
(3.58

and calculates the dynamics of the coefficieat6z). Pro-
jecting Eq.(3.41) on the eigenfunctions dAI,70 one gets

(3.59

Integrating this last equation oveland changing frona, to
as one gets

d,a(2)—i(K2+ nd)a(z)=0.

a(z=20+7/B)=ayzo+ 2/ B)exd i n3(s*+1)(z—zo)].
(3.60
Equations(3.54 and (3.60 describe the dynamics of the

term vos, Which is the leading contribution responsible for

radiation. The dependence [af,4/B on timet for four val-

ues ofz, z, (i.e., immediately after collision z=z,+1, z

=z9+2, andz=2z,+5, is shown in Fig. 3.
Sincev 3~ 0(ds/B?), the leading contribution to the ra-

diation intensity emitted due to the collision is of order

d3/8*. This contribution is given by

5§6=J | dt{|vog(t,2)|?>+ [cross terms, oscillating with]},
(3.61)

where cross terms include mixed products, such{sbo;,

2%, etc., which necessarily oscillate with The contri-
butions to &5 consist of a constant term originating from
integration overt of [v,4d? as well asz-dependent terms
originating from integration ovet of both [vog? and the

PHYSICAL REVIEW E68, 026605 (2003

[Vosl/B

FIG. 3. Absolute value of the radiation profile function normal-

ized toB, i.e.,|vog/B=|v,3/B, is shown as a function af for four
values ofz z=z; (solid), z=z,+1 (dashed z=z,+2 (dotted,
andz=z,+5 (dash-dottefl

tude. It is possible to show that fak>z,+ 1, all zdependent
contributions tof 56 decay algebraically withZ—z,). Thus,
far away from the collision region the only nonvanishing
contribution to€ & is

EX(z> 20+ 1) =

ZWBZF dsjal? 16B? (3.62
Slaq| "= . .
Mo J-w * 157

The details of this calculation are presented in Appendix C,
which also contains an analysis of the-z;+ 1 asymptotic
behavior of thez-dependent contributions originating from

integration ovett of all other terms invo3/2.
Fort>1 and —zy)>1, that is far from the soliton and

far from the collision region, Eq(3.41) for vz reduces to the
linear wave equatiofifor vg3)
i (?ZU 03+ (?tzl)og,: 0.

(3.63

Taking the limitt>1 and g—zy)>1 in expression3.10

for 503(t,z), while using Egs.(3.54 and Eq.(3.60, one
derives

- it
4770[i(z—zo)]1’2{1_ 70(Z2—2o)
Xexr{ )+O<—(z—zo)3’2)'

(3.64

It is also easy to check that the function given by E2164)
satisfies the linear wave equati@®.63).

vos(t,2)=

it?
4(z—2zp)

1

IV. DISCUSSION AND CONCLUSIONS

cross terms. Since the total energy of the soliton is conserved
after the collision, the dependence of the emitted radiation ~ We start this last section by presenting some estimations
leads to anO(d3/8*) z dependence of the soliton’s ampli- for the value and intensity of the inelastic collision effects.
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We use the result§3.62 and (3.51) to obtain specific pre- bative correction is identical to the one following from the
dictions for an optical fiber setup with distributed amplifica- equation

tion compensating losses or with lumped amplification and

dispersion tapered fibers. Takingyb=1 and requiring that i9,V +[1+&(2)]02W +2W¥|¥|?=0, 4.9

the widths of the colliding solitons are equait rates should

be the same in all the channel®ne obtains7;=(1  which explains pulse propagation in fibers with weak disor-
+3d3B8)Y2 Then, for the values specified in Sec. Il oneder &(z) in the second order dispersion coefficient. Let us
derives,£;~4.8x 1075, for the fraction of the total radia- consider, for example, the effect of a pseudorandom se-
tion emitted by the soliton in the reference channel relativequence of pulses from channglon pulses in the zero fre-

to the total energy of the bargdea) soliton. In addition, quency channel. In this cagé€z) can be written as

neglecting the decrease in the soliton amplitude, the total

energy emitted by the reference channel soliton as a result of £(2)=(&(2))+ u(2), (4.2)
many collisions with solitons from thg channel grows lin-
early with the number of collisions. Thus, for the parameter

Svhere the avera ives anO(d5/B) constant correc-
introduced above the average distance passed by the soli ere verage(z)) giv (ds/5)

. . 10 collisi aql bout 10% ft%n to the second order dispersion coefficient. The term
until it experiences collisions and loses about 00 ©(2) in the last equation is a zero mean Gaussian random

its energy is approximately 2500 km. function, characterized by
Let us continue discussion of the results. We have already

seen that the source term that gives the leading contribution , ,

into the collision-induced radiatigc])n emission has the form of (w(2u(z'))=Dé(z=2"), (4.3
an effective fast change in the second order dispersion coef-

ficient. Another interesting feature of the collision is that thewhere the disorder strengfh is given by

leading contributions to the observed effects come from

terms in the equations that involye,,. Thus, the leading, D=[2q(1-q)BB?]/T. (4.9
O(1/B), contribution to phase shift, which is due to the term

4i|\1,ﬁ0|2{1}00! is S|mp|y given by(’i)()l_ Then’ the |eading, In Eq(44) BZB(ﬁ) is the interchannel interaction intensity

O(1/82), contribution to position shift is due to thgd,,  defined in Eq(3.5D, B=(1+3d3p/2)B, T is the size of a

term. Finally, the leadingD(ds//32), contribution to the ra- slot al]ocated fqr a soliton, and is the average number of
- o 3% occupied slots in channg. We assumed here that the typi-

d|e_1t|o_n emission 1S due to thd3(9_tC_I>01 term that does not ., distancez, traveled by a zero channel soliton between

exist in the ideal two-soliton collision problem. Anpther re- any two subsequent collision event(2qF), is short, so

la_ltEd feat.ure of the problem |s~that t@(ds) 'statlon'ary that thes-correlated character of the effective disorder term

single soliton solution of Eq2.1) W, behaves like an ideal ¢ i 7 js justified. To account for the effect of many channels

soliton in the cclII|S|on. It acquires a@(1/8) phase shift due gne should modify the definition d introducing summa-

to the 4|\IfB0|2\If01 term and arO(1/82) position shift due tion over allowedand probably equidistanf3 on the rhs of

to theaf@é,lz) term, but does not give a contribution to emis- Ed- (4.4). This set of observations means that results ob-

sion of radiation up to third order of the perturbation theory.t@ined in Ref.[11] for the system given by Eqs4.1) and
One can expect that the leading contribution to radiatiorf4-3 directly apply to the study of soliton propagation under
multiple interactions with solitons from other channels. In

~ particular, one should expect the emergence of long range,
d33 D) . but zero average, radiation-mediated intrachannel interac-
Even though the effect of a single collision is relatively tion, leading to soliton jitter.
small (of third ordep, the accumulated effect of multiple Let us now make some general remarks. It is important to
collisions of a single soliton in the reference channel withstress that the study presented in this paper suggests a gen-
many solitons from different frequency channels can be vereral recipe for studying fast inelastic collisions between soli-
important. One obvious result of multiple collisions is the tons (pulses. The first step is to obtain a stationary single-
accumulated loss of energy that was already discussesbliton solution of the perturbed NLSE. For a variety of
above. Another effect, which might be much more severe, iproblems relevant for nonlinear fiber optics such stationary
the radiation-induced interaction between solitons propagatsolutions exist and are stable, at least in some range of pa-
ing in the same frequency channel, due to multiple collisiongameters. This solution is then used as an initial condition in
with solitons from all other channels. To study this effect,the collision problem. Using the double perturbation theory
one can consider the solitons in all other channels as a psepresented here, one can understand all of the effects of col-
dorandom sequence of pulses. Then propagation of solitorisions. Fast soliton collisions in the presence of Raman scat-
in a given channel is described by a perturbed NLSE, irtering is one such interesting as yet unexplored problem.
which the perturbative term has the form of the radiation(Raman scattering effects should be significant for propaga-
source term appearing on the rhs of E850 multiplied by  tion and interaction of very short pulsg€ne can also apply
az-dependent function that describes the quasirandom natuthis perturbation method to study fast non-ideal collisions of
of the multiple collisions. One finds that this kind of pertur- soliton-type solutions of equations other then the NLSE.

from \'ffOl will come only in orderd3/3? from the term
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APPENDIX A: KAUP'S PERTURBATION THEORY

functions must be added to the eigenset for completeness,

In this appendix we give a summary of the theory derived

by Kaup[7] for perturbations near an ideal soliton. Substi-

tuting
y=[cosh }(t)+v]expliz+ia),

into the ideal NLSE and expanding the result oweione

finds
) v v
17| x| TL| | =0, (A1)
where the operatdi is
L=(d?—1)os+ 2 (203+i0y) (A2)
= —1)o gqyt+105),
t 3 osH[t] 3 2

and the standard notations for the Pauli matrieas; 5 are
used.L satisfies the following set of relations

0'1L0'1:_L*, £+:a'3|:(}3. (A3)
The eigenset of the operatbrsolves
Lf=\f, (A4)

wheref is an eigenfunction correspondent to the eigenvalue

\. A general solution of Eq(A4) is

ot 1 Pikedt—t] (o)

= exiikt] (k+i)?cosht]) \1

exlikt] 1) o
(k+i)2cosr?[t](l koL (A

wherek runs from—o to +o. According to Eq.(AS),f_k
=0, f¥ are the other eigenfunctions bf

fi=expl —ikt 1+M(1)

k=exd —ikt] CZeosnd | L0
_ ekt 1) L
(k—i)zcosﬁ[t](l s M=—(k°+1). (AB)

The eigenset ol also contains the following marginally
stable modes:

t 1 .
f2:m<_l>, Lf2:—2f1; (A8)
_ttanr[t]—l 1 .
3_Tﬂt) 1) Lf3——2f0. (A9)

f o3.f, o3 are the left eigenfunctions df, which satisfy

e
f dtfy osfq=2m8(k—q), (A10)

+ “
f dtf) o3fq=—27o(k—0q), (A11)

+ oo N + oo N
f dtf; o5f,=2, f dtfy osfz=—2. (A12)

Let us obtain relations between infinitesimal changes in
the four parameters of the soliton and the four eigenmodes of
L. For this purpose, consider the most general form of the
single soliton solution of the ideal NLSE in the reference
channel

nexplia+in’z)

= , Al13
s cosh(x) (AL3)
wherex= 5(t—y). Let us denote
~ 7
= -, Al4
s coshx) (AL4)

and calculate the infinitesimal changég; originating from
infinitesimal changes im, y, 8, and ». For da<1 anddy
<1 one obtains

S| ~
5?/]: 5a=| noafqy(X) (A15)
and
s o~
| =nPoyh), (A16)
oy sy

respectively. These two relations are used throughout the text
to identify small changes in phase and position induced by
the collision. For the sake of completeness we also give here
the corresponding relations fa¥8<1 and 6n<<1. These
relations are
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s - -
( :ﬁ ) =i6BfH(X)+2nz8Bf1(X) (A17)
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APPENDIX B: ASYMPTOTICS OF THE EXACT
TWO-SOLITON SOLUTION AT 1 /B<1

In this appendix we discuss the asymptotics of the exact
two-soliton solution for the ideal NLSE. This analysis is used
as the starting point for the derivation of the double pertur-
bation method presented in Sec. lll. It also serves as a bench-
mark for calculations performed within the framework of
this double perturbation theory.

The exact two-soliton solution of the ideal NLSE is given
by [15]

71 expi x1){[ 71— n5+ Bi,lcoshh,+2i 1,81, sinhhy}

75+ n5+ B2,]coshh; coshh,— 29, 7,[ cosy,+ sinhh; sinhh,]

172 expli x2){[ 75— 77+ B3,]coshhy — 2i ; B1psinh(hy )}

[ 72+ 53+ B2,]coshh; coshh,— 27, 77,[ cOSy 1o+ Sinhh; sinhh,]’

and

S -, -

~ =—0nfa(X)+2ip°zdnfo(x), (ALY

Sy 5
respectively.

|
Yrwo=
|

X12=X1— X2, PB1=Pp1— B2, hj=n;(t-y;—2p;2),

Xi=aj+Bi(t=y)+ (7} =Bz, B2)

where j=1,2 correspond to the two different frequency

channels. The collision of the solitons occurs at

I
2(B1—B2)

Zp= (B3)

Taking the limit 1/8,— 8,|<1 in Eq.(B1), we obtain

_ M exp(ix1) 2i pptanhthy)
WO costthy) (B1—B2)

273~ 2., tant(hy)tanh(hy) — 73 COShZ(hz)l

(B1— Ba)?

n2explix,) B 2i n, tani(hy)

coslth,) (B1—B2)
29— 2mmotanh(hy) tank(hy) — 72 cosh—z(m)]

(B1— B2)?

nin exdi(2x1— x2)]

(B1— B2)? costt(hy)coshh,)
) m s exdi(2x2— x1)] +( 1 )
(B1— Bo)?costih;)cosi(h,) 1B1—Bal°)
(B4)

(B1)

Notice that the last two terms on the rhs of EB4) corre-
spond to oscillations in channelsB2— 8, and 28,— B4,
respectively. Thus, the two-soliton solutign,,, can be writ-
ten in the form

rowo=p, Y, T dp t dp,t bop gt bop,—p

+O(1U|B1—Bal¥), (B5)

where g, and hp, are theO(1) single-soliton solutions of

the ideal NLSE in channelg, and B,, respectively, which
are given by Eq(2.2). The termsg and ¢p, are correc-

tions of leading order 18;— B,| to these single-soliton so-
lutions in channelsB; and B,, respectively. The terms
b2p,-p, and ¢, 5 are corrections of order 13, — B,|?

in channels B,— 8, and 28,— B,, respectively. Provided
|B1— B> 1, expressioriB4) for i, is valid for any value
of z, including the collision region.

Let us consider the asymptotic behavior of soluti@&d)
far away from the collision point, that is &&—zy|>1/|8,
— B,|. In the regionz<z,— 1/|8,— B,|, which corresponds
to the situation before the collision, expressi@4) takes the
following form:

" :UleXF(in) - 2i 7,
o costth,) (B1—B2)
3 2m5*2n mytantthy) | 7, explixo)
(B1—B2)? coshth,)
o1z 2im  2miF2mmtantthy)
(B1—B2) (B1—B2)? '

z<z9—1|B1—Bal, (B6)
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where the upper and lower plus/minus signs correspond ttsing Eq.(3.58 one finds
B1—B>>0 andB;— B,<0, respectively. In the same man-

ner, in the regiore>z,+ 1/| 81— B,|, i.e., after the collision, B2 (= _ (= * —
one ObtainS 0 | 1 2| IR:?]_O 7ocdh0 7oods 7wdp[a3apf51fp2+asa;fslfpz
_ mexpixy) . 2i 7, +afayfpfot+alalfafy]. (C2)
™o coshthy) (B1=B2) _
5 Subsequent integration ovhy results in
2ny+2mmotanithy) | moexplixs) ,
- 27B° (=
(B1—B)? costthy) = 7:7 f dslag|?+ F+G, (C3
0 — o
2inp,  2mi*2mmptantthy)
x| 1= n ' where
(Bl_BZ) (Bl_BZ)Z
7520+ 1/ 81— Bo| (B7) mB? [= (= L 2
o+ 1|81 B, Feag || dsapextiv(s-piz-20)1
An immediate consequence of Eq&6) and (B7) is that
outside the collision regiog,, can be written as a sum of (s—p)[(s—p)*+4]
two single-soliton solutions. In fact, using E@®1) one can Xcost( ws/2)cost wp/2)sin 7(s—p)/2] (C4
show that the last statement is valid for any value| @f
— B,/>0. Moreover, comparing these last two expressionsng
while using Eqgs.(A15) and (A16), one finds that the only
effects of a collision between two ideal solitons up to order 7B2 (= [ 2 5 o
1/|B1— B,|? is anO(1/| 81— B,|) phase shift given by g=— 48770Jx wdepCOf{ Mo(s°+p°+2)(z2—2p)]
4
e - S O 88) y (s+p)(s*+p?—4sp-2) -
|B1= B |81 B cosh{ws/2)cosi wp/2)sinH 7w (s+p)/2]°

d anO(1/| 81— B|? iti hift gi b
and anO(151~ foI) position shift given by Consider F in the limit z>zy+1. Since in this limit the

47, 4z, exponential factor in the integrand on the rhs of Egd) is
m, Ay,=F¥—. (B9 rapidly oscillating(both ins and p), the major contribution
1~ P2

(B1—B2)° to this term comes from the regids|<1 and |p|<1. In-
Notice that the phase shift does not depend on the sign (ﬁj

eed, whers~p (or s~—p) and neithers nor p are small
(81— B,), while the position shift does. Similar analysis can is integral is exponentially suppressed because of the
be carried out for Eq(2.1) with d3#0, but taking into ac-

1/coshrs/2) and 1/coshp/2) factors. Then, expanding all
count only terms of order {with respect tads) in the exact

the terms in the integrand, except those with oscillating ex-
two-soliton solution. The expressions for the phase shift an

onent, aroundg,p) =(0,0), one finds that foz>2z,+ 1 the
the position shift obtained in this manner coincide with the erm /- decays like 1/¢=2o). Similarly, one can show thatin
ones given by Eqg¥3.20 and(3.31).

Ay]_: +

the limit z=z5+1 the termg is oscillating, and that the

amplitude of the oscillations is bounded by an envelope de-

caying like 1/¢—z,). Hence, the only nonvanishing contri-

bution tolg, and thus ta€fy, atz>zo+1 is given by

We present here a detailed calculation of the leading order

contribution& s to the radiation emitted as the result of col- R 1 _ZWBZJ“’ q , 16B?

lision. As explained in Sec. Il D the only nonvanishing con- 0d(Z>2+1)= o ) sia| 157,
0 0

tribution to £ comes from the integral

APPENDIX C: TOTAL RADIATION EMITTED

(C6)

which is exactly Eq.(3.62. In a similar manner one can
| o= dt[zos(t,2)|2 c1 show that the oscillating cross terms appearing in the inte-
R jfoo [vost.2) €D grand on the rhs of Eq3.61) vanish forz>z,+1.
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